For One Health Approaches to Succeed, Information Needs to Flow




In considering the different aspects of integrated approaches to human, animal and environmental health along a One Health paradigm, so many of the challenges seem to boil down to the challenge of how to get information to flow in ways it has not in the past. Here are some examples:  

Disease Surveillance:

A number of groups, including the National Academy of Sciences have called for the development of systems that integrate human and animal disease surveillance data. This could allow for improved detection of emerging disease threats in the environment, both infectious and toxic. The Yale Human Animal MedicineProject has performed analyses supporting the promise of such data integration.  But at present, disease surveillance is collected separately by human and animal health agencies, and not shared in a systematic fashion. As a result, we are still limited in our understanding of what the occurrence of disease events in animal populations (think white nose syndrome in bats or colony collapse in honeybees) means for human health. The Canary Database is one resource for at least examining this issue. We are also therefore limited in our ability to detect and predict human health problems related to environmental change. It will take political as well as scientific will to reorganize such information sharing, but it needs to happen.

Environmental risk data:

Part of the challenge of integrating human, animal, and environmental health is having adequate data about environmental risks, whether climate change, wildlife populations, or degree of contamination by biological, chemical, and/or physical hazards. While animal disease data can provide “sentinel” information about environmental risk “shared” by animals and humans, there is often a need to better characterize environments: getting this information often involves getting out in the environment and finding out what is going on, and transmitting that information to both human health and public health and animal health professionals.

 Genomic data:

The genomes of humans and animals hold the key to better understanding key differences and similarities between species that could help improve the health of both humans and animals, discovering new approaches to disease detection and treatment- see Zoobiquity.  Yet this information is complex and vast- and to use it better will take development of new technological approaches for comparing and exploring these genetic linkages. In addition, better understanding of the genetic characteristics of the pathogens that cross between humans and animals (such as influenza) can help anticipate and prevent outbreaks of zoonotic diseases affecting both human and animal populations. The Human Animal Medicine Project is working with several efforts to assemble and analyze genomic data about pathogens, including the GAINS database and Zoophy. Recent breakthroughs in DNA sequencing technology have produced vast databases of such genetic information- what is needed is a path through this thicket of data.

The Microbiome:

A related wealth of genetic information is accumulating about the human “microbiome”: the communities of microbes that call our gut, skin, and other surfaces home, and seem to have a large effect on our health and wellness. How do our microbiomes differ from those of our companion animals or other animals that we contact on a regular basis?  Is the sharing of microbes between humans and animals all negative or could there be some positive aspects to it that have evolved over millennia of coexistence between humans and animals? The Human Animal Medicine project is performing some pilot analyses of this in workers with close exposure to livestock.

Occupational Risk:

On a more basic level, when workers have close contact with animals, such as swine workers working in large production facilities, there is a need to supply them (and their employers) with better information about their occupational risk and ways to reduce such risk. Such information, such as the amount of virus or bacteria that is present in the air and surfaces of barns and other facilities may be critical to decisions about how to protect workers and reduce disease transmission. While this may seem to be sensitive information, better awareness of such information could actually benefit both human health (occupational and food safety) as well as the health of the animals. The Human Animal medicine project is piloting such approaches in workplaces.

The promise of One Health is the concept of rapid information flow between human, animal, and environmental health, allowing for early detection and prevention of emerging disease risks. If these pilot efforts and similar initiatives around the globe continue to bear fruit there is a chance that we are moving in the right direction toward a world with improved health across multiple species in a healthy environment.